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The construction of simpl,~ discontinuous comparison systems with non-linear elements of the "dry friction" type is proposed. 
The sets of dosed trajeetoJries of such systems, which are contact-free with respect to the vector field of the initial system, enable 
one to obtain estimates of the dissipation domain simply. A similar approach is also used to construct annular domains. The 
absence of the property of convergence in the case of a Li6nard system with a periodic additive term follows from the existence 
of these domains. © 1996 Elsevier Science Ltd. All fights reserved. 

There are many results on the dissipative nature of the non-autonomous Li6nard equation [1-3]. Many estimates 
of the dissipation dom~dn are based on considerations of the energy integral which, in a certain part of the phase 
space, possesses the properties of a Lyapunov function. In the other parts of phase space, it is found to be necessary 
to carry out additional special constructions and estimates along the trajectories being considered. All of this makes 
it difficult to obtain effective estimates of the global attractors of the Li6nard equation. The use of the trajectories 
of discontinuous comparison systems rather than the energy integral enable one to avoid these difficulties and to 
formulate theorems on the localization of the attractors of the non-antonomous Li6nard equation. 

Consider the system 

dy dx  
d"-'t = - ~ t ( F ( y ) - E ( t ) ) - x '  --~-t = y (1) 

where F0,), E(t)  are functions which satisfy the Lipsehitz condition and Ix is a positive number. 
We shall subsequently assume that the inequalities 

ot~t • 2, F ( y ) -  E(t) oty-  k signy • , V t ~ R  t, Vy;~O (2) 
Y Y 

are satisfied for eertakt positive numbers ~ and k. 
Assumption (2) is quite natural and traditional for Li6nard systems [1-3]. 
We now consider the linear systems 

dy dx  
~ =-~tay-x+~k, -fft=y (3) 

dy dx  
d - -~=-~ te t r -x -p .k , - -~ - t  = y (4) 

and, also, the positive laalf-trajectory of system (3) with the initial datay(0) = 0,x(0) = - o k  and the positive half- 
trajectory of (4) with t]ae initial datay(0) = 0,x(0) = ok (Fig. 1). 

The corresponding trajectory solutions for Gl(x, ok) and Gz(x, ok)  are given by 

The  set 

G d-~G = - IactG - x + ~tk , 
a x  

c a___q_c = _ ~ t a c  - x - , k  ( 5 )  
dx 

~(ot ,k)={x~[-~tk , lak] ,  G21x,lak) <~ 3' <~ Gl(x,~k)} 

is now introduced into the treatment. 
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Fig. 1. 

We recall that the invariant attracting set is called the attractor of system (1). If the attraction domain of an 
attractor when t ~ .o is the whole of the phase space R 2, then such an attractor is called a global attractor. 

Theorem 1. The global attractor of system (1) is contained in the set f~(~ k). 

Proof. Let inequality (2) be satisfied for k = k0. It is obvious that it is also satisfied for all k ~ ko. But, then, for 
any point (x0,Y0) of the set R~q(a ,  k0), a number k ~ k0 exists such that (x0,Y0) belongs to the boundary fl(a, k). 
Hence, we have a family of closed curves spanning the set R"W~(¢, k0). 

We shall show that these curves are contact-free almost everywhere except for the points 0' = 0,x ¢ R 1) and 
that the trajectories of system (1) "pierce" these curves from the outside to the inside. For this purpose, we shall 
make use of the Chaplygin-Kamke comparison principle [4--7] and inequality (2) 

dy _ - ~ t ( F ( y ) - E ( t ) ) - x  - la(oty-ksigny)-x  
dx y y 

V x ~ R  I, Vy~O, V t ~ R  1 

It follows from the comparison principle that the solutions Gi(x) which correspond to the trajectories of the system 

dx dy_  la(oty-ksigny)-x,  m = y  
dt dt 

and the solutiony(t),x(t) of system (1) possess the following property at the point t = t0,x0 = X(to),Yo = y(to) =Gi(xo) 

dy/dx < dGi/dx 

The required contact-free property of the curvesy = Gi(x, lak) with respect to the vector field of system (1) follows 
from this. The assertion of the theorem also follows from the contact-free property of this family of curves almost 
everywhere. 

We note that the inequalities 

Gl(x, lak ) <~ Rl(x-lak), G2(x,~tk) >t Rt(x+gk) 

(R I = -o~la / 2 + [(0tix) 2 / 4 -  I] ~ ) 

are satisfied. 
Hence, the set ~(a ,  k) is located in the strip 

{lyl ~ 2k / (a - la - l ) ,  x ~ g  I} 

In particular, the well-known result of Cartwright [1-3] follows from this. This is concerned with the fact that 
the global attractor of system (1) is uniformly bounded along they-coordinate when the parameter Ix e (0, +.o) is 
varied. 

We now consider the set D,0 = ¢q~ f~(ct, k), where the intersection is taken with respect to all the parameters 
ct and k which satisfy condition (2). 

Corollary 1. The global attractor of system (1) is contained in the set Do. 
We shall show how it is possible to apply this assertion to the simplest example when E(t) =- 0 and F(y) is a Van 

der Pol non-linearity. 

F(y) = y3/3 - y (6) 
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Initially putting ct == 2/1~ + E, where E is an arbitrarily small positive number, we obtain that the conditions (2) 
are satisfied when 

Hence, the set D.  is located in the strip 

{Ix'"-~(~+I~, yER'} 

Next, assuming that li > 2/3, we put ot = 3. Conditions (2) are then satisfied for any k > 16/3. Hence, the set 
is located in the parallogram 

Finally, we obtain rite inclusion 

3 3 - p  -I 

The latter estimate is asymptotically exact in the sense that, when Ix --> - ,  the boundary of this set is as close as 
desired to a certain pa:rt of the classical relaxation oscillation of the Van der Pol equation [1] (Fig. 2). 

Now, let the inequalities 

,~t>2, F(y)-E(t)<-f~y+vsigny, VteRl, Vy=O, Jy} ~< Yo (7) 
Y Y 

be satisfied ([i, v and T0 are certain positive numbers). We shall consider the solution G3(x,  try) of  the equation 

GdGIdx  = ~t[lG - x -  ~tv 

with the initial data Gs~{llv, Ilv) = 0 and the solution G4(x , [tV) of the equation 

GdGIdx = t f f JG-  x + l~v 

Y 

Fig. 2. Fig. 3. 



332 G.A. Leonov 

with the initial data G4(-Ixv, Ixv) = 0 (Fig. 3). We note that, as in the case of Eq. (5), these equations correspond 
to linear second-order equations of type (3) and (4). 

The set 

O(V)={x¢[-$tv, ixV], G4(x,l~v ) ~< y ~< G3(x,$tv)} 

is now introduced into the discussion. 

Theorem 2. Let inequalities (2), (7) and 

iG3(x,Ixv)[ ~ Y0, IG4(x,$W)l ~< Y0, Vx[-Bv,Ixv] 

be satisfied. 
The set f~(k)\~(v) is then positively invariant in the case of the solutions of system (I). 
The proof of this theorem repeats the arguments of Theorem 1. Here, the contact-free property of the boundary 

of the set • wheny ~ 0 also follows from the Chaplygin-Karnke principle and from inequality (7). 

Corollary 2. If a function E(t) is periodic and the conditions of Theorem 2 are satisfied, system (I) does not possess 
the property of convergence, that is, of the stability of the periodic solution as a whole. 

In fact, the set • is negatively invariant and, according to Brauer's theorem, a periodic solution exists in O. 
It is clear that the existence of this solution in the set • and the positive invariance of the annulus fl\~ are at 

variance with the convergence property. Note that the following simple inequalities arc sometimes useful for verifying 
the conditions of Theorem 2 

R2(x-Ixv ) ~ G4(x, Ixv) ~ G3(x, Bv) ~ R2(x+Ixv), VxE[-Bv,Ixv] 

(R 2 = ~ l x / 2 -  [([~p.)2 / 4 -  I] ~ ) 

We now consider the Van der Pol non-linearity (6) and E(t) = b sin tat. Here, b and to are positive numbers. 
Putting v ffi b, we obtain simple sufficient conditions for system (1) to be non-convergent 

[$$t>2, 2b/([3-1z - I )  <~ [3 ( i -~ ) ]  )~ (8) 

For large Ix, assuming that ~ = 2/3, we obtain the estimate b <~ 1/3. 
We note that the following estimate of the boundary of the convergence domain is known [8, 3] for large Ix: 

b = b0:b0 E (2/3 - 0.01, 2/3). 
For a continuous Levinson non-linearity [3] F(y) 

dF fl, lyl>1 
5 lyl<l 

and instead of the inequalities (8), we obtain the condition 

IX>2, h ~ (1 - ~t-I)/2 

The necessary apparatus for extending the estimates suggested here to the case when IXQt < 2 and Ix[l < 2 has 
been developed in [9, 10]. 

R E F E R E N C E S  

1. LEFSHETS S., Geometrical Theory of Differential Equations. Izd. Inostr. Lit., Moscow, 1961. 
2. CF_~ARI L., Asymptotic Behaviour and Stability of the Solutions of Ordinary Differential Equations. Mir, Moscow, 1964. 
3. PLISS V. A., Non-local Problems in the Theory of I,'tbrations, Nauka, Moscow, 1964. 
4. CHAPLYGIN S. A., New Method for the Approximate Integration of Differential Equations. Gostekhizdat, Moscow, 1950. 
5. KAMKE E., Zur Theorie der Systeme gew6hnlicher Differentialgleichungen II. Acta Math. 58, 57-85, 1932. 
6. LEONOV G. A., REITMANN V. and SMIRNOVA V. B., Non-local methods for pendulum-like feedback systems. Teunbner- 

terde zur Mathematik. 132, 242, 1992. 
7. BELYKH V. N., Analysis of continuous phase-locked systems by the method of two-dimensional comparison systems. In 

Phase-locked Systems (Edited by V. V. Shakhgil'dyan and L. N. Belynstina), Radio i Svyaz, Moscow, 1982. 
8. CARTWRIGHT M. L. and L I ~ W O O D  J. E., On non-linear differential equations of the second order.Ann. Math. 48, 

2, 472-494, 1947. 
9. LEONOV G. A., Vibrations in systems with non-linear damping. Pr/k/. Mat. Mekh. 57, 5, 183-184, 1993. 

10. LEONOV G. A., Lower limits of the number of cycles of two-dimensional dynamical systems. Vestn. SPb. Univ., Seriya 
Matematika, Mekhanika, Astronom/ya 1, 42-46, 1994. 

Translated by E.LS. 


